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(Received 24 April 1998 and in revised form 26 November 1999)

The generation of ship bow waves is studied within the framework of potential
flow theory. Assuming the ship bow to be slender, or thin, a pattern of the flow is
derived using the method of matched asymptotic expansions. This method leads to
the determination of three different zones in which three asymptotic expansions are
performed and matched. To first order with respect to the slenderness parameter, the
near-field flow appears to be two-dimensional in each transverse plane along the bow.
However, it is demonstrated that three-dimensional effects are important in front of
the ship and must be taken into account in the composite solution. This leads to a
three-dimensional correction to be added to the two-dimensional solution along the
ship. The asymptotic approach is then applied to explain the structure of the bow
flow in connection with experimental observations and numerical simulations.

1. Introduction
Ship bow waves have received considerable attention, in particular because of

their nonlinear character. Experimentally, it is observed that steep diverging waves
generally originate in the bow region (see e.g. Miyata & Inui 1984; Dong, Katz &
Huang 1997). From a theoretical point of view, Ogilvie (1967) extended the earliest
high-speed slender body theories (von Kàrmàn 1929; Wagner 1932; Tulin 1957) to
account for gravity and nonlinear free-surface effects. Ogilvie (1972) applied this
approach and obtained a linear solution for the bow flow in the case of a wedge-
shaped bow. Numerous authors then studied free-surface potential flow around a
slender ship bow using the so-called 21

2
D or 2D+ t theory. This approach was used to

compute the flow around a flat plate placed at an angle in a uniform flow (Chapman
1975), including eventually forced periodic motions in sway and yaw (Chapman 1976),
leading to good predictions of the hydrodynamic coefficients. The linearized problem
was studied for both steady flow and incident head sea waves with a ship that was
restrained from oscillating (Faltinsen 1983). In both cases, the bow flow solution
was matched to a far-field solution representing the divergent wave system. Many
comparisons were made with other measured and calculated steady wave elevation
for realistic ships.

With the increase of storage and computational capacities, it became possible to
solve numerically the two-dimensional nonlinear boundary value problem using the
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mixed Eulerian Lagrangian (MEL) method, initially developed (independently) by
Longuet-Higgins & Cokelet (1976) and Faltinsen (1977), the latter using Ogilvie’s
ideas. Fritts, Meinhold & Von Kerczek (1988) and Calisal & Chan (1989) applied this
method and presented nonlinear numerical results for bow waves. This approach has
then been used and extended to study the steady flow and the seakeeping behaviour of
fast ships in the frequency domain (Faltinsen & Zhao 1991a, b; Faltinsen 1993). Time
domain simulations were performed by Maruo & Song (1994), taking into account
the presence of an incoming head sea wave as well as heave and pitch motion of the
ship. Recently, this approach has been used to study numerically nonlinear diverging
bow waves (Tulin & Wu 1996), to compute deck wetness and slamming as the bow
enters an incoming wave (Wu, Fontaine & Tulin 2000), and finally to compute wave
resistance either for fast ships (Fontaine & Cordier 1997) or associated with the
nonlinear character of the bow waves (Zhao & Faltinsen 1999). The evolution of this
theory, from a more general point of view, has recently been summarized in a review
by Fontaine & Tulin (1998).

From a theoretical point of view, Fontaine & Cointe (1997) show how the method
of matched asymptotic expansions can provide a consistent perturbation procedure
for the justification of this approximation. To first order with respect to the slenderness
parameter, the asymptotic analysis leads to the conclusion that, in the vicinity of a
slender ship bow, the longitudinal perturbations of the incident uniform flow can
be neglected in comparison to the transversal perturbations. In the bow domain
(see figure 1), the initial steady three-dimensional nonlinear boundary value problem
reduces to an unsteady two-dimensional nonlinear one. In some circumstances, the
simplified two-dimensional ‘parabolic’ problem can moreover be linearized.

Far from the ship, the two-dimensional bow flow solution matches a three-
dimensional linear far-field solution. To first order, the far-field flow does not influence
the bow flow so that only the latter needs to be computed. The three-dimensional
character of the bow flow is only taken into account through the free-surface condi-
tions which lead to an interaction between successive two-dimensional cross-sections
of the flow, but do not provide any upstream influence. In particular, this ‘parabolic’
approximation of the equations does not predict a rise of water in front of the bow,
in disagreement with reality. This discrepancy between theoretical and experimental
results suggests the need for a more accurate description of the flow in front of the
bow. The rise of water in front could be a higher-order effect but, as we shall see, this
is not the correct explanation.

In this study, a local analysis of the flow in the near-bow domain is performed
leading to the determination of a near-bow solution which matches both to the bow
flow and to the far-field solutions. A composite solution is then derived, which leads to
an estimate of the wave elevation in front of the bow and allows a three-dimensional
correction to be added to the two-dimensional solution.

The bow flow and far-field flow solutions are respectively presented in § 2 and § 3.
The near-bow flow problem is then derived (§ 4) and solved analytically in the special
case of a thin ship. The bow, near-bow and far-field solutions are then matched (§ 5).
The asymptotic study is extended by assuming that the hull is vertical sided (§ 6). The
numerical methods used in the case of a slender hull are presented (§ 7). The structure
of the flow is then discussed and numerical results are presented (§ 8). Technical details
associated with the asymptotic analysis are to be found in Appendices A and B.
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Figure 1. Illustration of the different domains of the composite solution.

2. The bow flow problems
The fluid is assumed to be incompressible and the flow irrotational. The ship is

characterized by its maximum beam b and draught h (see figure 1). The formal
equation describing the shape of the hull is y/b = f

(
x/L, z/h

)
where L is the

longitudinal length scale. Thus, the two non-dimensional geometrical parameters are
tan α = b/L and δ = h/L. The ship is said to be slender when tan α ' δ � 1 and thin
when tan α� δ � 1.

To study the flow in the vicinity of the ship, an inner (or bow) domain is defined
on a radial length scale equal to the draught h and on a longitudinal length scale L.
The non-dimensional variables are defined as

x̃ =
x

L
, ŷ =

y

h
, ẑ =

z

h
, ϕ̂ =

ϕ

Ub
, η̂ =

η

b
, (2.1)

where ϕ is the velocity perturbation potential and η the free-surface elevation.
Assuming the ship to be slender or thin, the following asymptotic expansions are
introduced:

ϕ̂(x̃, ŷ, ẑ; α, δ) = µ̂1(α, δ) ϕ̂1(x̃, ŷ, ẑ) + o(µ̂1), (2.2)

η̂(x̃, ŷ; α, δ) = ν̂1(α, δ) η̂1(x̃, ŷ) + o(ν̂1), (2.3)

where the functions ϕ̂1, η̂1 and their derivatives are assumed to be O(1) and indepen-
dent of α and δ if the gauge functions µ̂1, ν̂1 are correctly chosen.

2.1. Simplified equations

2.1.1. Laplace equation

Using the non-dimensional variables, the three-dimensional Laplace equation gives

δ2 ∂
2ϕ̂1

∂x̃2
+
∂2ϕ̂1

∂ŷ2
+
∂2ϕ̂1

∂ẑ2
+ o(1) = 0 (2.4)
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and reduces, to the leading order, to its two-dimensional form in each transverse
plane:

∂2ϕ̂1

∂ŷ2
+
∂2ϕ̂1

∂ẑ2
= 0, (2.5)

in accordance with the intuitive idea that longitudinal variations in the x-direction
are small compared to the transversal ones, since the ship is slender. Obviously, three-
dimensional effects that arise far from the ship cannot be described by this equation.
The potential ϕ̂1 must therefore be interpreted as the near-field (or inner) solution.

2.1.2. Body boundary condition

The body boundary condition is expressed on the hull ŷ = ((tan α)/δ) f(x̃, ẑ) and is
written

∂f

∂x̃

(
1 + µ̂1 tan α

∂ϕ̂1

∂x̃

)
− µ̂1

δ

∂ϕ̂1

∂ŷ
+
µ̂1

δ

tan α

δ

∂f

∂ẑ

∂ϕ̂1

∂ẑ
+ o(1) = 0. (2.6)

Assuming the hull to be shaped, i.e. ∂f/∂x̃ = O(1) and ∂f/∂ẑ = O(1), the principle
of least degeneracy leads to µ̂1 = δ, whether the ship is thin or slender. For a slender
hull (α ' δ � 1), the resulting condition is imposed on the exact position of the hull
and reduces to[

∂f

∂x̃
− ∂ϕ̂1

∂ŷ
+

tan α

δ

∂f

∂ẑ

∂ϕ̂1

∂ẑ

](
x̃, ŷ =

tan α

δ
f(x̃, ẑ), ẑ

)
= 0. (2.7)

For a thin ship (α� δ � 1), the resulting condition can be applied on the symmetry
axis of the ship without introducing any significant error at this order:[

∂f

∂x̃
− ∂ϕ̂1

∂ŷ

]
(x̃, 0, ẑ) = 0. (2.8)

2.1.3. Free-surface conditions

The kinematic free-surface boundary condition is expressed on ẑ = ν̂1 ((tan α)/δ) η̂1

and reads

∂η̂1

∂x̃
+ δ tan α

∂ϕ̂1

∂x̃

∂η̂1

∂x̃
+

tan α

δ

∂ϕ̂1

∂ŷ

∂η̂1

∂ŷ
− 1

ν̂1

∂ϕ̂1

∂ẑ
+ o(1) = 0. (2.9)

The principle of least degeneracy leads to ν̂1 = 1 in order to retain the last term of
(2.9). For a slender ship, the condition (2.9) is imposed on the exact position of the
free surface and reduces to[

∂η̂1

∂x̃
+

tan α

δ

∂ϕ̂1

∂ŷ

∂η̂1

∂ŷ
− ∂ϕ̂1

∂ẑ

](
x̃, ŷ,

tan α

δ
η̂1

)
= 0. (2.10)

The thin-ship assumption justifies the linearization of this condition which can then
be expressed on the axis ẑ = 0:[

∂η̂1

∂x̃
− ∂ϕ̂1

∂ẑ

]
(x̃, ŷ, 0) = 0. (2.11)
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The dynamic free-surface condition gives, with F2
L = U2/gL:

∂ϕ̂1

∂x̃
+

1

2
δ tan α

(
∂ϕ̂1

∂x̃

)2

+
1

2

tan α

δ

[(
∂ϕ̂1

∂ŷ

)2

+

(
∂ϕ̂1

∂ẑ

)2
]

+
1

δF2
L

η̂1 + o(1) = 0. (2.12)

In order to find a non-trivial solution for η̂1, it is necessary to impose

F̂2
L =

δU2

gL
> O(1). (2.13)

For a slender ship, the dynamic free-surface condition then reduces to[
∂ϕ̂1

∂x̃
+

1

2

tan α

δ

((
∂ϕ̂1

∂ŷ

)2

+

(
∂ϕ̂1

∂ẑ

)2
)](

x̃, ŷ,
tan α

δ
η̂1

)
+
η̂1

F̂2
L

= 0. (2.14)

When the ship is thin, the resulting dynamic free-surface boundary condition is linear:[
∂ϕ̂1

∂x̃
+

1

F̂2
L

η̂1

]
(x̃, ŷ, 0) = 0. (2.15)

In this case, the free-surface conditions (2.11) and (2.15) can be rearranged to give
the classical Neumann–Kelvin condition for the potential:[

∂2ϕ̂1

∂x̃2
+K

∂ϕ̂1

∂ẑ

]
(x̃, ŷ, 0) = 0, with K =

1

δF2
L

6 O(1). (2.16)

2.2. Asymptotic domain of validity

To summarize, the flow in the vicinity of a slender hull is governed to first order by
the two-dimensional Laplace equation (2.5) subject to the boundary conditions (2.7),
(2.10) and (2.14). These equations also apply when the ship is assumed to be thin,
but in this last case the boundary conditions can moreover be linearized to give (2.8)
and (2.16). Apart from the slender ship hypothesis, the main assumption leading to
the asymptotic expansion is given by the condition (2.13) on the Froude number.

If L is the length of the ship, this equation implies that U must satisfy

FL =
U

(g L)1/2
> O

(
1

δ1/2

)
= O

((
L

h

)1/2
)
. (2.17)

This confirms that these asymptotic equations can be applied to study the flow around
slender high-speed ships. When the Froude number is much larger than 1/δ1/2, the
effects of gravity can be neglected. This case corresponds in practice to the flow
around a planing hull.

Even for slower ships, this approximation applies to a distance L from the bow if
L is chosen so that

L 6 O

(
U

(
h

g

)1/2
)

= O(h Fh), where Fh =
U

(gh)1/2
. (2.18)

This expression gives the order of magnitude of L for the approximation to remain
valid, as long as the ship is assumed to be slender or thin. These hypotheses require
that Fh � O(1). These simplified equations can therefore be applied to study the flow
around the bow of a slender ship if the Froude number based on the draught is high
enough.
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3. The far-field flow
The bow flow solution only satisfies the two-dimensional Laplace equation and is

therefore not valid far from the ship. Boundary conditions at infinity, for the bow
flow problem, must be provided by a matching condition with a far-field (or outer)
solution. The far-field domain is defined on the length scale L so that the outer
variables are defined as

ỹ =
y

L
= δ ŷ, z̃ =

z

L
= δ ẑ, η̃ = η̂, ϕ̃ = ϕ̂, (3.1)

and the following asymptotic expansions are performed:

ϕ̃(x̃, ỹ, z̃; α, δ) = µ̃1(α, δ) ϕ̃1(x̃, ỹ, z̃) + o(µ̃1), (3.2)

η̃(x̃, ỹ; α, δ) = ν̃1(α, δ) η̂1(x̃, ỹ) + o(ν̃1). (3.3)

Since in the far-field domain the space variables are not stretched, the leading-order
perturbation potential ϕ̃1 satisfies the three-dimensional Laplace equation in the fluid
domain. From the far-field point of view, the details of the hull shape cannot be
distinguished, so that the hull appears as a straight line segment [0, 1] along the
x̃-axis. The body boundary condition is thus replaced by a matching condition with
the bow flow solution. Using the outer variables, the free-surface conditions give

∂η̃1

∂x̃
+ µ̃1 tan α

(
∂ϕ̃1

∂x̃

∂η̃1

∂x̃
+
∂ϕ̃1

∂ỹ

∂η̃1

∂ỹ

)
− µ̃1

ν̃1

∂ϕ̃1

∂z̃
+ o(1) = 0, (3.4)

∂ϕ̃1

∂x̃
+

1

2
µ̃1 tan α

((
∂ϕ̃1

∂x̃

)2

+

(
∂ϕ̃1

∂ỹ

)2

+

(
∂ϕ̃1

∂z̃

)2
)

+
ν̃1

µ̃1 F
2
L

η̃1 + o(1) = 0. (3.5)

The simplified free-surface conditions are obtained using the principle of least degen-
eracy (see Fontaine 1996 for the details), leading to

∂ϕ̃1

∂x̃
(x̃, ỹ, 0) = 0, (3.6)

[
∂η̃1

∂x̃
− ∂ϕ̃1

∂z̃

]
(x̃, ỹ, 0) = 0. (3.7)

The potential must therefore vanish on the undisturbed free surface (z̃ = 0), except
in the wake of the ship, i.e. ỹ = z̃ = 0, x̃ > 1, where it can be constant. The general
far-field solution is expressed as a multipole expansion (Ward 1955). Matching this
solution to the bow flow solution leads to the conclusion that µ̃1 = ν̃1 = δ2 and

ϕ̃1(x̃, r̃, θ) =

∫ ∞
0

−µ(s)

4 π

r̃ sin(θ)[
(x̃− s)2 + r̃2

]3/2 ds , (3.8)

where θ = arctan(z̃/ỹ) and r̃ = (ỹ2 + z̃2)1/2. The far-field solution is thus given by a
distribution of three-dimensional vertical dipoles on the axis x̃ > 0. In order to satisfy
the outer dynamic free-surface condition, the dipole density µ must be constant, equal
to µw in the wake behind the ship, which leads to

ϕ̃1 =

∫ 1

0

−µ(s)

4π

r̃ sin(θ)[
(x̃− s)2 + r̃2

]3/2 ds− µw

4π

sin(θ)

r̃

(
1 +

x̃− 1√
(x̃− 1)2 + r̃2

)
, (3.9)
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η̃1 =
1

ỹ2

∫ 1

0

−µ(s)

4 π

[
1 +

x̃− s√
(x̃− s)2 + ỹ2

]
ds− µw

4 π ỹ2

[
x̃− 1 +

√
(x̃− 1)2 + ỹ2

]
.

(3.10)
The dipole density µ(x̃) is deduced from the behaviour of the bow flow solution.
Far from the hull, as r̂ = r̃/δ → +∞, the bow flow potential behaves like a two-
dimensional vertical dipole whose density is equal to the three-dimensional dipole
density of the outer solution:

lim
r̂→∞ ϕ̂1(x̃, r̂, θ) = − µ(x̃)

2π

sin(θ)

r̂
. (3.11)

Since the outer solution (3.8) is regular in front of the ship (x̃ < 0), the initial
conditions for the bow flow problem may be found by matching the bow flow and
far-field flow solutions. The behaviour of the far-field potential near the origin is
derived in Appendix B. The inner expansion of the far-field solution appears to be
an order of magnitude smaller than the outer expansion of the bow flow solution.
To overcome this mis-match, we look for an asymptotic expansion of the solution in
the near-bow domain. The near-bow flow solution is then matched to the bow flow
solution and to the far-field solution.

4. The near-bow flow
The near-bow domain is defined on a length scale equal to h so that the following

additional non-dimensional variables are defined:

x̂ =
x

h
, ϕ̆ = ϕ̂, η̆ = η̂. (4.1)

Assuming the ship bow to be thin or slender, the following asymptotic expansions
are performed:

ϕ̆(x̂, ŷ, ẑ; α, δ) = µ̆1(α, δ) ϕ̆1(x̂, ŷ, ẑ) + o(µ̆1), (4.2)

η̆(x̂, ŷ; α, δ) = ν̆1(α, δ) η̆1(x̂, ŷ) + o(ν̆1). (4.3)

4.1. Simplified equations

Since in the near-bow domain the space variables are not stretched, the leading-order
perturbation potential ϕ̆1 satisfies the three-dimensional Laplace equation in the fluid
domain:

∂2ϕ̆1

∂x̂2
+
∂2ϕ̆1

∂ŷ2
+
∂2ϕ̆1

∂ẑ2
= 0, (4.4)

subject to the following boundary conditions.

4.1.1. Body boundary condition(
1 + µ̆1

tan α

δ

∂ϕ̆1

∂x̂

)
∂f

∂x̃
− µ̆1

δ

∂ϕ̆1

∂ŷ
+ µ̆1

tan α

δ2

∂ϕ̆1

∂ẑ

∂f

∂ẑ
+ o(1) = 0. (4.5)

The principle of least degeneracy enables one to conclude that µ̆1 = δ for both a
slender and a thin ship. The perturbation potential is of the same order of magnitude in
the near-bow domain as in the bow domain. Consequently, the transversal components
of the velocity perturbation have the same order of magnitude in the two domains.
However the longitudinal component, i.e. in the x-direction, is an order of magnitude



22 E. Fontaine, O. M. Faltinsen and R. Cointe

bigger in the near-bow domain than in the bow one. When the ship is slender, the
resulting body boundary condition is

∂f

∂x̃
− ∂ϕ̆1

∂ŷ
+

tan α

δ

∂f

∂ẑ

∂ϕ̆1

∂ẑ
= 0 on ŷ =

tan α

δ
f(x̃, ẑ). (4.6)

When the ship is thin, the resulting boundary condition can be further simplified and
applies on the centre-plane of the hull:

∂f

∂x̃
− ∂ϕ̆1

∂ŷ
= 0 on ŷ = 0. (4.7)

4.1.2. Free-surface conditions

Using the previous result for the order of magnitude of the potential, the kinematic
free-surface condition gives(

1 + tan α
∂ϕ̆1

∂x̂

)
∂η̆1

∂x̂
+ tan α

∂ϕ̆1

∂ŷ

∂η̆1

∂ŷ
− δ

ν̆1

∂ϕ̆1

∂ẑ
+ o(1) = 0. (4.8)

The principle of least degeneracy leads to ν̆1 = δ and the resulting simplified kinematic
free-surface condition is linear:

∂η̆1

∂x̂
− ∂ϕ̆1

∂ẑ
= 0 on ẑ = 0. (4.9)

The dynamic free-surface condition gives

∂ϕ̆1

∂x̂
+

1

2
tan α

((
∂ϕ̆1

∂x̂

)2

+

(
∂ϕ̆1

∂ŷ

)2

+

(
∂ϕ̆1

∂ẑ

)2
)

+ tan α
gL

U2
η̆1 + o(1) = 0 on ẑ = 0.

(4.10)

From (2.13), it follows that gL/U2 6 δ � 1 so that tan α gL/U2 � tan α � 1. As a
result, the last term of (2.14) is of higher order and can be dropped. Assuming the
perturbation potential vanishes at infinity in front of the ship (x̂→ −∞), the resulting
simplified dynamic free-surface condition is

ϕ̆1(x̂, ŷ, 0) = 0. (4.11)

To first order, gravity effects can be neglected in front of the bow and free-surface
particles have only a vertical velocity. The near-bow flow problem is thus similar to
a typical impact problem, see Cointe (1989).

4.2. Near-bow flow solution for a thin ship

In the near-bow domain, the perturbation potential satisfies the three-dimensional
Laplace equation and vanishes on the undisturbed free surface. When the ship is
slender, the body boundary condition applies to the exact position of the hull and
the near-bow flow problem must, in general, be solved numerically (see § 7). In order
to gain some insight into the structure of the solution, the ship bow is assumed to be
thin. This assumption allows an analytical solution to be found since the near-bow
flow potential can be expressed in term of a distribution of sources and sinks on the
centre-plane of the hull and its mirror image. For the sake of simplicity, the draught
of the ship is assumed to be constant so that the solution is then given by

ϕ̆1 = lim
δ→0

1

2π

∫ 0

−1

dζ

∫ L/δ

0

fx̃(δξ, ζ)G(x̂, ŷ, ẑ, ξ, ζ) dξ (4.12)



New insight into the generation of ship bow waves 23

d
c

ab

Bow
solution

Far-field
solution

Near-bow
solution

Figure 2. Illustration of the matching processes.

with

G =
[
(x̂− ξ)2 + ŷ2 + (ẑ + ζ)2

]−1/2 − [(x̂− ξ)2 + ŷ2 + (ẑ − ζ)2
]−1/2

. (4.13)

Performing the integration and taking the limit leads to

ϕ̆1 =
1

2π

∫ 0

−1

fx̃(0, ζ) ln

[
−x̂+

(
x̂2 + ŷ2 + (ẑ − ζ)2

)1/2

−x̂+
(
x̂2 + ŷ2 + (ẑ + ζ)2

)1/2

]
dζ. (4.14)

It is easy to check that the homogeneous Dirichlet condition (4.11) is satisfied on the
undisturbed free surface, and it is also shown in Appendix A that the linearized body
boundary condition (4.7) is met.

5. Matching of the solutions
The matching procedure is illustrated in figure 2. The matching (a), between the

bow and far-field solution is given in Fontaine & Cointe (1997). Here, we have to
check that the near-bow solution matches on the one hand the bow solution (b) and
on the other hand the far-field solution (c) and (d).

5.1. Matching near-bow flow and the bow flow solutions

In order to match the near-bow flow solution to the bow flow one, we follow Kevorkian
& Cole (1981) and define an intermediate variable xχ = x̃/χ(δ), with δ � χ(δ) � 1,
which is O(1) in the overlap domain. The matching condition at first order is then

lim
δ→0

xχ=O(1)
xχ>0

1

δ

[
δ ϕ̆1

(
χ(δ)

δ
xχ, ŷ, ẑ

)
− δ ϕ̂1(χ(δ)xχ, ŷ, ẑ)

]
= 0. (5.1)

The first term of this equation describes the behaviour of the near-bow flow solution
as x̂→ +∞ and can easily be derived from equation (4.14):

lim
δ→0

xχ=O(1)
xχ>0

ϕ̆1

(
χ(δ)

δ
xχ, ŷ, ẑ

)
=

1

2π

∫ 0

−1

fx̃(0, ζ) ln

[
ŷ2 + (ẑ − ζ)2

ŷ2 + (ẑ + ζ)2

]
dζ + O

[(
δ

χ(δ)

)2
]
. (5.2)

Since this quantity is O(1), the bow flow and the near-bow flow solutions have the
same order of magnitude in the overlap domain. According to (5.1), the bow flow
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solution is matched to the near-bow flow solution if

ϕ̂1(0, ŷ, ẑ) =
1

2π

∫ 0

−1

fx̃(0, ζ) ln

[
ŷ2 + (ẑ − ζ)2

ŷ2 + (ẑ + ζ)2

]
dζ. (5.3)

This condition is satisfied if the initial conditions for the bow flow problem are

ϕ̂1(0, ŷ, 0) = 0 and η̂1(0, ŷ) = 0. (5.4)

The matching conditions (5.1) between the bow flow and near-bow flow solutions
allow therefore the justification of the classical closure assumptions (5.4) used to
compute the bow flow solution. The bow flow solution is therefore a fully two-
dimensional solution and does not include any upstream influence between the strips.
We will show in the next section how three-dimensional effects arise in the composite
solution.

5.2. Matching near-bow flow and the far-field flow solutions

In order to perform this matching, we have to check that the two solutions match in
two limit processes. The two solutions must match far from the side of the bow, i.e.
x̂ = O(1) and r̂ → +∞, and in front of the ship, i.e. r̂ = O(1) and x̂→ −∞.

5.2.1. First limit process: x̂ = O(1) and r̂ → +∞
As before, we define an intermediate variable rχ = r̃/χ(δ), with δ � χ(δ) � 1,

which is O(1) in the overlap domain. To first order, the matching condition is

lim
δ→0

rχ=O(1)

1

δ

[
δ ϕ̆1

(
x̂,
χ(δ)

δ
rχ, θ

)
− δ2 ϕ̃1(δx̂, χ(δ)rχ, θ)

]
= 0. (5.5)

The first term of this equation describes the behaviour of the near-bow flow solution
far from the side of the ship bow, as r̂ → +∞, and can be evaluated using (4.14). The
second term of this equation describes the behaviour of the far-field solution near to
the side of the ship, i.e. as r̃ → 0, and can be derived from (3.8). The details of these
calculations may be found in Appendix B. This leads to

lim
δ→0

rχ=O(1)

δϕ̆1

(
x̂,
χ(δ)

δ
rχ, θ

)
= − δ2

χ(δ)

sin θ

rχ

1

π

∫ 0

−1

ζ fx̃(0, ζ) dζ + O

[
δ3

χ(δ)2

]
, (5.6)

lim
δ→0

rχ=O(1)

δ2ϕ̃1(δx̂, χ(δ)rχ, θ) = − δ2

χ(δ)

sin θ

rχ

µ(0)

4π
+ o

[
δ2

χ(δ)

]
. (5.7)

The dipole density at the origin µ(0) is obtained from (3.11) by analysing the behaviour
of the bow flow solution for x̃ = 0 and r̂ → +∞. Using (5.3), it follows that

lim
r̂→+∞ ϕ̂1(0, r̂, θ) = − 2

π

sin θ

r̂

∫ 0

−1

ζ fx̃(0, ζ) dζ + O

(
1

r̂3

)
. (5.8)

Substituting this expression into (3.11) finally gives

µ(0) = 4

∫ 0

−1

ζ fx̃(0, ζ) dζ, (5.9)

so that the matching condition (5.5) is satisfied.
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5.2.2. Second limit process: r̂ = O(1) and x̂→ −∞
We define an intermediate variable xχ = x̃/χ(δ), with δ � χ(δ)� 1, which is O(1)

in the overlap domain. To first order, the matching condition is

lim
δ→0

xχ=O(1)
xχ<0

1

µ̆1

[
µ̆1ϕ̆1

(
χ(δ)

δ
xχ, r̂, θ

)
− µ̃1ϕ̃1

(
χ(δ)xχ, δr̂, θ

)]
= 0. (5.10)

The first term of this equation describes the behaviour of the near-bow flow solution
in front of the ship bow, as x̂→ −∞, and can be evaluated using (4.14). The second
term in the matching condition describes the behaviour of the far-field flow solution
in front of the ship bow as x̃ → 0−, and can be obtained from (3.8). The details of
these calculations may be found in Appendix B. This leads to

lim
δ→0

xχ=O(1)
xχ<0

δϕ̆1

(
χ(δ)

δ
xχ, r̂, θ

)
= − 1

2π

δ3

χ(δ)2

r̂ sin θ

xχ2

∫ 0

−1

ζ fx̃(0, ζ) dζ + o

[
δ3

χ(δ)2

]
, (5.11)

lim
δ→0

xχ=O(1)
xχ<0

δ2 ϕ̃1(χ(δ)xχ, δr̂, θ) = − δ3

χ(δ)2

µ(0)

8π

r̂ sin θ

x2
χ

+ o

[
δ3

χ(δ)2

]
. (5.12)

Substituting the value of µ(0) from (5.9) in this last equation leads to the conclusion
that the two solutions match.

5.3. Composite solution for the potential

The perturbation potential is given by

ϕ

Ub
=


δ ϕ̆1(x̂, ŷ, ẑ) in the near-bow domain

δ ϕ̂1(x̃, ŷ, ẑ) in the bow domain

δ2 ϕ̃1(x̃, ỹ, z̃) in the far-field domain.

(5.13)

Near the ship, a composite solution can be obtained by adding the near-bow flow
solution to the bow flow solution and by subtracting the common part of the two
expansions. For the potential, the common part is given by (5.3). Since the bow flow
solution vanishes in front of the bow (x̃ 6 0), the composite solution around the bow
(r̂ = O(1)) is given by

ϕ

Ub
=


δ ϕ̆1(x̂, ŷ, ẑ) for x̂ < 0

δ

[
ϕ̂1 + ϕ̆1 − 1

2π

∫ 0

−1

fx̃(0, ζ) ln

(
ŷ2 + (ẑ − ζ)2

ŷ2 + (ẑ + ζ)2

)
dζ

]
for x̂ > 0.

(5.14)

6. Special case of a vertical sided hull
In general, the near-bow solution (4.14) requires knowledge of the hull shape at

the edge of the thin ship bow. The asymptotic analysis can be further extended by
considering the special case of a vertical sided hull for which fx̃(0, ξ) is constant. In
the near-bow domain, the hull is then approximated to first order by an infinitely
long wedge with constant draught h and an apex angle equal to 2α. This flow has
been studied by Fontaine & Faltinsen (1997).
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Figure 3. Free-surface elevation in front of the thin vertical-sided hull.

6.1. Near-bow free-surface elevation

In the near-bow domain, the vertical velocity of the free surface can be evaluated
using (4.14), so that the kinematic free-surface condition (4.9) becomes

∂η̆1

∂x̂
= − 1

π

∫ 0

−1

s(−x̂+ (x̂2 + ŷ2 + s2)1/2
)

(x̂2 + ŷ2 + s2)1/2
ds

= − 1

π

[
ln
(−x̂+ (x̂2 + ŷ2 + s2)1/2

)]0
−1

= − 1

π
ln

[ −x̂+ (x̂2 + ŷ2)1/2

−x̂+ (x̂2 + ŷ2 + 1)1/2

]
. (6.1)

An explicit solution for η̆1 can be found by partial integration of this last equation,
assuming that η̆1 → 0 as x̂→ −∞:

η̆1(x̂, ŷ) =

∫ x̂

−∞
∂η̆1

∂s
ds

= − 1

π

[
s ln

(
−s+

(
s2 + ŷ2

)1/2

−s+
(
s2 + ŷ2 + 1

)1/2

)
+ (s2 + ŷ2)1/2 − (s2 + ŷ2 + 1)1/2

]x̂
−∞

= − 1

π

[
x̂ ln

( −x̂+ (x̂2 + ŷ2)1/2

−x̂+ (x̂2 + ŷ2 + 1)1/2

)
+ (x̂2 + ŷ2)1/2 − (x̂2 + ŷ2 + 1)1/2

]
.

(6.2)

This expression is plotted in figure 3 and shows the formation of a hump in front of
the bow.

6.2. Composite solution for the free-surface elevation

Since the bow solution vanishes for x̂ < 0, the composite solution for the wave
elevation is equal to the near-bow solution given by (6.2). Along the hull, i.e. for
x̂ > 0, the composite solution is obtained by adding the correction ∆η̂1 to the bow
solution:

η

b
'
{
δ η̆1(x̂, ŷ, ẑ) for x̂ < 0
η̂1 + ∆η̂1 for x̂ > 0.

(6.3)

By construction of the composite solution, this correction is equal to the difference
between the near-bow flow elevation and the common part of the two asymptotic
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Figure 4. Three-dimensional correction to be added to the two-dimensional bow solution.

expansions of the free-surface elevation:

∆η̂1 = δ

∫ x̂

−∞
− 1

π
ln

[ −s+ (s2 + ŷ2)1/2

−s+ (s2 + ŷ2 + 1)1/2

]
ds+ δ

∫ x̂

0

1

π
ln

(
ŷ2

ŷ2 + 1

)
ds. (6.4)

The last term of this equation represents the common part of the two expansions for
the free-surface elevation. It is equal to the derivative with respect to the variable
ẑ of the common part of the expansions for the potential (5.3), evaluated on the
undisturbed free surface (ẑ = 0). Performing the integrals leads to the following
three-dimensional correction for x > 0:

∆η̂1

δ
= − 1

π

[
x̂ ln

(
(−x̂+(x̂2+ŷ2)1/2)

(−x̂+(x̂2+ŷ2+1)1/2)

(ŷ2+1)

ŷ2

)
+ (x̂2+ŷ2)1/2−(x̂2+ŷ2+1)1/2

]
.

(6.5)

The three-dimensional correction for the wave profile along the thin hull is obtained
by taking the limit of this expression as ŷ → 0, leading to

∆η = b∆η̂1(x̂, 0) =
αh

π

[
x̂ ln

(
2x̂(−x̂+ (x̂2 + 1)1/2)

)− x̂+ (x̂2 + 1)1/2
]
. (6.6)

This expression is plotted in figure 4 which shows that the correction decays rapidly
to zero (as O(1/x̂)) far from the bow edge, so that the composite solution differs from
the bow solution only in the neighbourhood of the edge of the bow.

7. Numerical simulations
In the previous sections, an analytic framework for describing the surface displace-

ment around a thin ship bow has been derived, leading to some insight into the
structure of the flow. The thin ship approximation, initially introduced by Michell
(1898) in a pioneering work, suffers however from a lack of precision, largely because
ships are not sufficiently thin. In the more general case of a slender ship, the near-bow,
bow flow and composite solutions have to be computed numerically. After describing
briefly the numerical methods used, we present comparisons with experiments to show
how the results relate to the physical context.
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Figure 5. Comparison between numerical and theoretical solution for the wave elevation in front
of the wedge-shaped bow along the line ŷ = 0.

7.1. The near-bow flow solution

To compute the near-bow flow solution, the three-dimensional Laplace equation
(4.4) is solved using a classical panel method based on Rankine singularities (see
Delhommeau 1987). The solution is expressed as a distribution of sources placed
on the exact position of the hull and associated sinks on its mirror image with
respect to the free surface. The dynamic free surface (4.11) is therefore automatically
enforced. The density of the singularities is computed through the resolution of an
integral equation and using the boundary condition on the hull (4.6). Finally, the
free-surface condition (4.9) is integrated numerically using a standard time-stepping
procedure, such as the fourth-order Runge–Kutta algorithm. The numerical program
has been verified by comparison with the analytical results corresponding to the
thin-ship approximation (see figure 5). In order to reach a satisfactory agreement
between numerical and theoretical results, it has been found necessary to account for
the finite length of the ship. The theoretical solution for the free-surface elevation in
front of thin ship, (6.2), has been computed analytically taking into account the finite
value of δ. A sink was also placed at the stern so that the net flux of water over
the surface of the wedge is exactly zero. With these precautions, it was shown that
the numerical solution converges to the analytical one as the wedge angle goes to
zero.

7.2. The bow flow solution

An interesting way of interpreting the bow-flow problem is to consider a frame of
reference fixed with respect to the fluid. Through the relationship x = Ut, the ship
can be seen as a two-dimensional deformable wavemaker. The two-dimensional bow
flow appears to be generated by the change of area of the section of the ship in the
cross-plane, leading to the generation and propagation of nonlinear diverging waves.
To solve numerically the bow flow problem, we use a mixed Eulerian Lagrangian
method (MEL) similar to that introduced by Longuet-Higgins & Cokelet (1976) based
on the Sindbad code (Cointe 1990). Details of the numerical method can be found in
Fontaine (1996) and Fontaine & Cointe (1997) so that only key ideas will be given
here.
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The nonlinear free-surface conditions (2.10) and (2.14) are expressed in a Lagran-
gian form

Dϕ

Dt
= −g z +

1

2

[(
∂ϕ

∂s

)2

+

(
∂ϕ

∂n

)2
]
, (7.1)

DX

Dt
=
∂ϕ

∂s
s+

∂ϕ

∂n
n, (7.2)

where D is used to indicate a material derivative, ϕ(X ) is the potential of a fluid
particle on the free surface at the location X . The vectors s and n are respectively
tangent and normal to the free surface. A Neumann boundary condition is imposed
on the hull as a result of the body boundary condition (2.7) as well as on the axes of
symmetry below the hull. Far from the ship, the inner fluid domain is bounded by a
circular control surface (see figure 1) on which is applied a Robin–Fourier condition:

ϕ+ r
∂ϕ

∂n
= 0, (7.3)

in order to enforce the matching condition (3.11) between the bow flow and far-field
flow solutions. At each time step, this set of boundary conditions allows the potential
and its normal derivative to be computed through the resolution of the integral
equation:

θ(M)ϕ(M) =

∫
Σ

[
ϕ(P )

∂G

∂np
(M,P )− ∂ϕ

∂np
(P )G(M,P )

]
dsp, (7.4)

where M is a point on the boundary, G is the simple source Green function, θ(M) is
the included angle, or the angle between two tangents of the boundary (equal to π for
a smooth curve) and s is a curvilinear abscissa along the boundary Σ. Equation (7.4) is
discretized using a standard collocation method. The boundary of the computational
domain is approximed by segments and ϕ and ϕn are assumed to vary linearly along
each segment. The numerical procedure is then reduced to the integration of equations
(7.1) and (7.2) starting from initial conditions for the free-surface elevation and the
associated potential.

Ideally, the initial condition should be given by (5.4) but it was found that using
these initial conditions directly tends to generate the so-called sawtooth instability
that renders the nonlinear simulation unstable as the grid space goes to zero. Instead
of classically controlling the growth of these instabilities by smoothing the solution,
we suppressed them by using initial conditions derived from the analytical solution
for a thin ship. Under this assumption, the results by Peregrine (1972) and Roberts
(1987) for the transient free-surface flow generated by a moving vertical plate can be
used to describe the bow flow along a thin wall-sided hull. The short-time expansion
of the solution was used for the free-surface elevation, and the potential on the free
surface was taken as the integral in time of the surface displacement, according to
the linear dynamic free-surface condition. The numerical program has been verified
by comparing with the analytical results for a thin wedge-shaped bow. It was found
that the nonlinear numerical solution converges (within graphical accuracy) to the
linear analytical solution as the apex angle α goes to zero. It has also been checked
that Ogilvie’s (1972) and Roberts’s (1987) results agree for the wave profile along the
hull. For the case of a non-vertical wall-sided hull, following Maruo & Song (1994),
the self-similar solution corresponding to the two-dimensional wedge entry problem
with small apex angle (Cointe 1991) was used to start the computation instead.
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7.3. Composite solution

The composite solution is constructed by adding the near-bow solution to the bow
one and subtracting the common part of the two developments. For the case of a
thin ship, the common part is given by (5.3). This expression can be interpreted as
the solution of the two-dimensional Laplace equation subject to the body boundary
condition on the exact location of the hull and an homogeneous Dirichlet condition
for the potential on the undisturbed free surface. In the case of a slender ship, the
common part is computed in a similar way to the bow flow solution, i.e. using
the MEL method, except that the free-surface conditions are modified accordingly.
The correction to be added to the nonlinear bow solution is equal to the difference
between the near-bow solution and the common part. Since the correction is small and
is obtained from the difference between two large quantities, it was found necessary
to avoid interpolation errors between the different meshes. The near-bow solution for
the free-surface elevation is therefore evaluated at the same points as the common
part. Even so, smoothing had to be introduced to get rid of the oscillations that arise
for large values of x/h, as the value of the correction goes to zero.

8. Validation
8.1. Gravity-free flow

According to the present theory, the wave elevation in front of the bow does not
depend on the speed of the ship. This property results from the fact that gravity
effects can be neglected to first order in the near-bow domain and therefore also in
the general case. In the case of a thin vertical-sided hull, the wave elevation does not
depend on the precise shape of the hull, but only on the draught h and the apex angle
α. The wave elevation at the edge of the bow can be obtained by taking the limit of
(6.2) as x̂→ 0 and ŷ → 0, leading to

η(0, 0) =
tan α h

π
. (8.1)

In this last expression, tan α is assumed to be small. This result differs from the result
of Sclavounos (1994) who predicted half the value of (8.1) using a different approach.
The fact that the three independent solutions in the bow, near-bow and far-field
domains match indicates that (8.1) is the correct theoretical value. This result has
been compared with experiments presented by Fontaine & Cointe (1997). However,
the effect of surface tension is important in these experiments because of the small size
of the model tested. The results can nevertheless be scaled to full scale by introducing
a surface tension parameter Fh

√
σ/(ρg)/h, where σ ' 72.8× 10−3 N m−1, so that full

scale corresponds to that surface tension parameter going to zero (see Fontaine &
Faltinsen 1997). The results then show that (8.1) is reasonable. This is also confirmed
by the experiments performed at a larger scale by Larrarte (1994) in the towing tank
of Ecole Centrale de Nantes (60 m length, 5 m width, 2.5 m depth). The flat-bottom
wall-sided hull has an identical parabolic shape at the bow and the stern, while the
centre part of the ship consists of a simple rectangular cylinder of one third the total
length of the ship. The apex angle at the bow is α = 20◦, the draught is h = 0.2 m
and the total length of the model is 1.5 m. Results for the wave profile along the hull
are presented in figure 6. The lowest Fh values do not show the character of a high-
Froude-number flow at the bow; in particular the free-surface elevation has already
reached its maximum at the nose. For the higher values (Fh = 0.664 and larger), the
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Figure 6. Wave profile along a wall-sided parabolic bow with apex angle α = 20◦ and draught
h = 0.2 m. Experiments were performed by Larrarte (1994) at Ecole Centrale de Nantes.

difference between (8.1) and the experiment is less than 10% although the perturbation
parameter is not small (tan α ' 0.36). One may therefore hope that a higher-order
solution in terms of α may explain this small difference. The near-bow flow solution
(6.2) is singular at the apex of the wedge since the slope of the free surface tends to
infinity. This suggests that strong vertical gradients arise near the contact point.

Very close to the bow, Dong et al. (1997) observed that a very thin and instable liq-
uid sheet develops on the body. In the following discussion, we interpret some of their
experimental results in the light of our theoretical approach. Their measurements show
that the vertical velocity near the body gradually decreases as the depth increases, and
changes sign at a given depth which would seem to be independent of the Froude num-
ber (see their figures 8 and 13). From a theoretical point of view, the bow flow solution
can be described by the small-time expansion by Peregrine (1972) or Roberts (1987)
close to the nose. This solution is however singular at the intersection between the body
and the free surface because of its high oscillatory behaviour. The singularity can be
removed by considering the effects of surface tension (Joo, Schultz & Messiter 1990), so
that the resulting solution is regular and does not depend on gravity. This implies that
the overall flow close to the nose is not affected by gravity, which is in agreement with
the observations by Dong et al. (1997) that the length scale describing the flow close to
the nose does not depend on the Froude number. Figure 7 shows the composite solu-
tion for the velocity field and wave elevation in the case of a parabolic wall-sided bow.
As observed, the vertical velocity changes its sign on the hull. The liquid below moves
towards the bottom of the ship and the liquid above is (or more precisely will be)
involved in the wave motion. Further away from the body, the upward trend extends
to a larger depth as a result of the dipole-like behaviour of the asymptotic solution.

8.2. Diverging waves

The linear solution for the flow around a thin bow (Roberts 1987) involves the length
scales hFh in the longitudinal direction and h in the transverse ones. For values of
the Froude number Fh larger than 1, this scaling is confirmed by the experimental
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Figure 7. Linear composite solution for the flow around a wedge-shaped bow, α = 20◦, h = 0.2 m,
Fh = 0.93 in the cross-section x = 0.025 m.

results by Ogilvie (1972), Calisal & Chan (1989) and Miyata & Inui (1984) in the
case of a wedge-shaped bow. Figure 8 shows a comparison between numerical and
experimental results by Larrarte (1994) for the wave profile along the hull. The Froude
number Fh is equal to 0.93 and the perturbation parameters δ and α are respectively
0.13 and 0.35 so that this case clearly appears as a limiting one from an asymptotic
point of view. The simulation leads to a fairly good prediction of the bow wave height,
but the longitudinal position at which the maximum occurs is over-estimated. In the
present case, measurements show that the perturbation of the flow in the longitudinal
direction is not completely negligible in comparison to that in the transverse direction
(Miyata & Inui 1984). Similar trends were obtained by Calisal & Chan (1989) for a
wedge-shaped bow, and by Faltinsen (1983) on realistic ships, including both a Series
60 hull, Cb = 0.6 at Froude numbers FL = 0.22, 0.28 and 0.35, and a Wigley hull at
FL = 0.266. In this last case, the longitudinal position of the maximum is correctly
predicted at FL = 0.348 and 0.452. At higher Froude numbers, Faltinsen & Zhao
(1991b) and Fontaine & Cordier (1997) also reported good agreement for the wave
profile along the hull of a high-speed ship.

An example of a high-resolution nonlinear computation for the wave field around
a Wigley hull at Froude number FL = 0.5 is presented in figure 9. The numerical
simulation was achieved using 35 points per draught, leading to the equivalent of 106

points on the free surface. The simulation was performed over twice the length of the
ship in order to illustrate the global pattern of the flow. Very close to the bow, the free
surface rises rapidly leading eventually to the formation of a jet. This splash would
seem to be an impact-like phenomenon as discussed earlier. The rising water is then
halted by the action of gravity and falls, in the process creating a strong diverging
wave crest (A) which radiates out away from the body. This may then be followed
by one or more divergent crests, (B) in the present case, probably due to dispersive
effects. Behind the ship, a ‘rooster tail’ is formed, which also would seem to create
diverging waves in the wake as the result of its release, in a Poisson-like problem. For
a transom stern, it is likely that a near stern solution should be introduced.
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Figure 9. Diverging waves generated by a Wigley hull, FL = 0.5, h/L = 0.1 and b/L = 0.075.
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Since the simplified approach does not include the transverse wave system, it should
be used where the diverging wave system is dominating. In the case of high-speed
ships, the transverse waves eventually become longer enough that they appear only
in the wake of the ship, thus justifying the use of the present approach over the
whole ship length. This is confirmed by the successful comparisons between the
wave fields obtained with both the present theory and three-dimensional thin-ship
linear computations (Faltinsen & Zhao 1991b). Even for a slower ship, the diverging
wave pattern obtained matches in great detail the features calculated by solving the
three-dimensional nonlinear boundary value problem (Tulin & Wu 1996).

As the Froude number increases, the angle between the bow wave and the model
axis decreases. The point along the body at which the wave detaches from the model
moves further downstream. The distance between the waves increases and the wave
crest become straighter (less curved). These trends are consistent with the observa-
tions reported by Dong et al. (1997) and Miyata & Inui (1984) although variations of
the wave angle could appear in contrast to prediction by classical three-dimensional
linear theory that the wave field is contained within the constant Kelvin angle. This
pattern is however observed very far from the ship and is not described within the
present analysis which focuses attention on the flow in the vicinity of the ship. From a
theoretical point of view, the asymptotic study presented here could certainly be com-
pleted by including a far-field analysis similar to the one performed by Cole (1988) in
the case of high-speed planing ships. Using the length scale U2/g, the high-speed ship
appears as a pressure disturbance moving on the free surface, and the corresponding
linear solution predicts three-dimensional features such as the Kelvin angle.

9. Conclusions
The steady free-surface potential flow around a slender or thin hull has been

studied. It has been demonstrated that the method of matched asymptotic expansions
provides a consistent perturbation procedure for the justification of a ‘parabolic’
approximation of the equations. Due to the slenderness assumption, the flow in
the vicinity of the hull is two-dimensional in each cross-section. However, three-
dimensional effects are important in front of the bow and yield a correction to
the two-dimensional solution. This correction arises through the composite solution.
The asymptotic analysis is then used to explain the structure of the bow wave in
connection with experimental results. The mixed Eulerian Lagrangian method is then
applied to solve the nonlinear near-field flow and numerical results are presented.
Since the MEL method allows the overturning phase of breaking to be simulated, at
least until the jet re-enters the front face of the wave, the nonlinear high-speed slender
body theory presented here appears as an interesting alternative to the resolution of
the three-dimensional nonlinear problem for both, bow breaking waves and the entire
flow around a high-speed ship.
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Nantes where experimental studies were performed, and finally M. P. Tulin and T.
Lamont-Smith from the University of California at Santa Barbara, Ocean Engineering
Laboratory, respectively for their fruitful discussions and patient proof-reading of this
manuscript.
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Appendix A. Near-bow flow solution

In this Appendix, we demonstrate that the near-bow flow solution for a thin ship
given by (4.14) satisfies the simplified body boundary condition (4.7). From (4.14),
it follows that

2π lim
ŷ→0+

∂ϕ̆1

∂ŷ
= lim

ŷ→0+

∫ 0

−1

G−(x̂, ŷ, ẑ, s) fx̃(0, s) ds

− lim
ŷ→0+

∫ 0

−1

G+(x̂, ŷ, ẑ, s) fx̃(0, s) ds, (A 1)

where

G−(x̂, ŷ, ẑ, s) =
1

−x̂+
(
x̂2 + ŷ2 + (ẑ − s)2

)1/2

ŷ(
x̂2 + ŷ2 + (ẑ − s)2

)1/2
, (A 2)

G+(x̂, ŷ, ẑ, s) =
1

−x̂+
(
x̂2 + ŷ2 + (ẑ + s)2

)1/2

ŷ(
x̂2 + ŷ2 + (ẑ + s)2

)1/2
. (A 3)

Since fx̃(0, s) is regular for s ∈ [−1, 0], and limG+ = 0 as ŷ → 0+ for ẑ ∈ [−1, 0] and
for all s ∈ [−1, 0], it follows that the second term of the right-hand side of (A 1) is
equal to zero. The first term can be written as

lim
ŷ→0+

∫ 0

−1

G−(x̂, ŷ, ẑ, s) fx̃(0, s) ds = lim
ŷ→0+

[∫ ẑ−ε

−1

+

∫ ẑ+ε

ẑ−ε
+

∫ 0

ẑ+ε

G−(x̂, ŷ, ẑ, s) fx̃(0, s) ds

]

= lim
ŷ→0+

∫ ẑ+ε

ẑ−ε
G−(x̂, ŷ, ẑ, s) fx̃(0, s) ds, (A 4)

where ε is a small positive number. Using the previous arguments leads to the
conclusion that the only contribution comes from the singularity for y = 0 and s = ẑ.
This contribution is evaluated using a Taylor expansion:

lim
ŷ→0+

∫ ẑ+ε

ẑ−ε
G−(x̂, ŷ, ẑ, s) fx̃(0, s) ds = lim

ŷ→0+

∫ ẑ+ε

ẑ−ε
f(0, ẑ)

−x̂+ x̂

[
1 +

1

2

(
ŷ

x̂

)2

+
1

2

(
ẑ − s
x̂

)2
]

× ŷ

x̂

[
1 +

1

2

(
ŷ

x̂

)2

+
1

2

(
ẑ − s
x̂

)2
] [1 + o(1)] ds

= lim
ŷ→0+

∫ ẑ+ε

ẑ−ε
2ŷ

ŷ2 + (ẑ − s)2
fx̃(0, ẑ) ds

= 4fx̃(0, ẑ) lim
ŷ→0+

arctan(ε/ŷ)

= 2π fx̃(0, ẑ). (A 5)

As a result, the body boundary condition (4.7) is satisfied.
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Appendix B. Asymptotic behaviour of the different solutions

In the limit processes described above, it is understood that δ � ξ(δ) � 1 and
rξ = O(1), xξ = O(1):

lim
δ→0

rχ=O(1)

δϕ̆1

(
x̂,
χ(δ)

δ
rχ, θ

)

=
δ

2π

∫ 0

−1

fx̃(0, ζ) ln


−χ(δ)

δ
xχ +

(
x̂2 +

(
χ(δ)

δ
rχ cos θ

)2

+

(
χ(δ)

δ
rχ sin θ − ζ

)2
)1/2

−χ(δ)

δ
xχ +

(
x̂2 +

(
χ(δ)

δ
rχ cos θ

)2

+

(
χ(δ)

δ
rχ sin θ + ζ

)2
)1/2

dζ

=
δ

2π

∫ 0

−1

fx̃(0, ζ)

−2 sin θ

χ(δ)

δ
rχ

ζ + O

[(
δ

χ(δ)

)2
] dζ

= − δ2

χ(δ)

sin θ

rχ

1

π

∫ 0

−1

ζ fx̃(0, ζ) dζ + O

[
δ3

χ(δ)2

]
; (B 1)

lim
δ→0

rχ=O(1)

δ2ϕ̃1(δx̂, χ(δ)rχ, θ) = −δ
2 sin θ

4πr̃

∫ ∞
−x̃/r̃

µ(r̃s′′ + x̃)

(s′′2 + 1)3/2
ds′′ with s′′ =

s− x̃
r̃

= −sin θ

4πrχ

δ2

χ(δ)

∫ ∞
− δ
χ(δ)

x̂
rχ

µ(χ(δ)rχs
′′ + δx̂)

(s′′2 + 1)3/2
ds′′

= −µ(0)
sin θ

4πrχ

δ2

χ(δ)

∫ ∞
0

1

(s′′2 + 1)3/2
(1 + o(1)) ds′′

= − δ2

χ(δ)

sin θ

rχ

µ(0)

4π
+ o

[
δ2

χ(δ)

]
; (B 2)

lim
δ→0

xχ=O(1)
xχ<0

δϕ̆1

(
χ(δ)

δ
xχ, r̂, θ

)

=
δ

2π

∫ 0

−1

fx̃(0, ζ) ln


−χ(δ)

δ
xχ +

((
χ(δ)

δ
xχ

)2

+ ŷ2 + (ẑ − ζ)2

)1/2

−χ(δ)

δ
xχ +

((
χ(δ)

δ
xχ

)2

+ ŷ2 + (ẑ + ζ)2

)1/2

 dζ

=
δ

2π

∫ 0

−1

fx̃(0, ζ)

− r̂ sin θ(
χ(δ)

δ
xχ

)2
ζ + O

[(
δ

χ(δ)

)4
] dζ

= − 1

2π

δ3

χ(δ)2

r̂ sin θ

xχ2

∫ 0

−1

ζ fx̃(0, ζ) dζ + o

[
δ3

χ(δ)2

]
; (B 3)
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lim
δ→0

xχ=O(1)
xχ<0

δ2 ϕ̃1(χ(δ)xχ, δr̂, θ)

= δ2

∫ ∞
0

−µ(s)

4 π

δr̂ sin(θ)[
(χ(δ)xχ − s)2 + (δr̂)2

]3/2 ds

= − 1

4π

δ3

χ(δ)2
r̂ sin θ

∫ ∞
0

µ(χ(δ)s′)[
(xχ − s′)2 +

(
δ

χ(δ)
r̂

)2
]3/2

ds′ with s′ =
s

χ(δ)

= − 1

4π

δ3

χ(δ)2
r̂ sin θ

∫ ∞
0

1

(xχ − s′)3

µ(χ(δ)s′)[
1 +

(
δr̂

χ(δ)(xχ − s′)
)2
]3/2

ds′

= − 1

4π

δ3

χ(δ)2
r̂ sin θ

∫ ∞
0

1

(xχ − s′)3
[µ(0) + O(χ(δ))]

[
1 + O

(
δ

χ(δ)

)]
ds′

= −µ(0)

4π

δ3

χ(δ)2
r̂ sin θ

∫ ∞
0

1

(xχ − s′)3
ds′ + o

[
δ3

χ(δ)2

]
= − δ3

χ(δ)2

µ(0)

8π

r̂ sin θ

x2
χ

+ o

[
δ3

χ(δ)2

]
= −δ µ(0)

8π

r̂ sin θ

x̂2
+ o(δ). (B 4)
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Delhommeau, G. 1987 Les problèmes de diffraction-radiation et de résistance de vagues: étude
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